NWPF

News ArchivesRead News

Breakthrough technology for testing Alzheimer’s and Parkinson’s drugs

Thursday February 18, 2010

news@Northwestern - In a breakthrough development for early drug research, Northeastern University scientists are now able to test, in real time, the impact of new drugs being developed to treat neurodegenerative diseases like Alzheimer’s and Parkinson’s.

A patented new imaging technology developed by Northeastern’s Center for Translational NeuroImaging (CTNI) enables researchers to produce highly accurate data without resorting to traditional preclinical testing methods. Those methods involve euthanizing laboratory animals at different stages of the study to assess disease progression and the effectiveness of the drug.

“Animal imaging is crucial in early drug discovery, but the use of anesthesia creates an artificial situation that can mask true drug activity,” said Craig Ferris, CTNI director and professor of psychology and pharmaceutical sciences. “Studying awake animals leads to improved drug safety evaluations and data accuracy.”

Ferris noted the testing they are now able to perform at CTNI maximizes accuracy and leads to improved drug development processes for pharmaceutical and biotechnology companies that are working to treat central nervous system diseases, including Alzheimer’s and Parkinson’s diseases.

The center’s imaging-based preclinical testing is performed under the aegis of a new business venture, called Ekam Imaging, Inc., founded by a team that includes Ferris and Graham Jones, professor and chair of the department of chemistry and chemical biology at Northeastern.

The technology has spawned eight patents focused on the imaging of animals and a new method for tagging drugs using microwave-mediated organic synthesis technology. This procedure allows injected compounds to be more accurately tracked and evaluated for efficacy.

Additionally, the center uses advanced data-analysis techniques, including three-dimensional brain “atlases” used for data visualization, and imaging models of various disease conditions.

“The advantages of our technology give researchers the ability to provide information and analysis to drug companies that enable them to make more informed go/no-go decisions on their drug development programs,” added Ferris. “It will help reduce the time to market for new therapeutics and lower the overall cost of drug development.”

Recent News

Jul 18 - Doctors Unravel The Placebo Effect Of Fake Parkinson's Disease Treatment
Jul 15 - Parkinson's Boosts Creativity: Study
Jul 15 - How A Single Protein Could Unlock New Treatments For Brain Cancer And Parkinson's Disease
Jul 10 - Imaging Biomarker Proposed for Parkinson’s Disease
Jul 10 - Sleep Disturbances, Common in Parkinson's Disease, can be Early Indicator of Disease Onset
Jul 9 - Cinnamon May be Used to Halt the Progression of Parkinson's Disease
Jul 8 - Stanford Doctors Treat Parkinson's Disease Patients with Life-Changing Technology
Jul 7 - MRI Brain Scans Detect People with Early Parkinson's
Jul 3 - Low Accuracy of Clinical Diagnosis for Early Parkinson’s Disease
Jul 2 - Walking Improves Mood, Eases Fatigue in Those with Parkinson's Disease
Jun 27 - Northwest Parkinson's Foundation Leaves Cure to Others, Focuses on Today
Jun 26 - New Insights Could Help in Battle to Beat Parkinson's Disease
Jun 26 - More Benefits Found In Deep Brain Stimulation for Parkinson’s
Jun 24 - Using Femtosecond Lasers to Administer Drugs
Jun 18 - Bee-Venom Acupuncture Shows Promise in Parkinson's
Jun 18 - Smell Test Plus Imaging May Spot Parkinson's Early
Jun 17 - Magnetic Stimulation Improves Parkinson's Symptoms
Jun 11 - Parkinson's Disease Early Stages Detected With 'Simple' MRI; Up To 85% Accurate
Jun 11 - Fetal-cell Revival for Parkinson’s
Jun 11 - Meet the 11-year-old Girl who Invented an Un-spillable, Un-breakable Cup for her Grandfather with Parkinson's Disease